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Abstract

Elimination by aspects (EBA) is a probabilis-
tic choice model describing how humans de-
cide between several options. The options
from which the choice is made are char-
acterized by binary features and associated
weights. For instance, when choosing which
mobile phone to buy the features to consider
may be: long lasting battery, color screen,
etc. Existing methods for inferring the pa-
rameters of the model assume pre-specified
features. However, the features that lead to
the observed choices are not always known.
Here, we present a non-parametric Bayesian
model to infer the features of the options
and the corresponding weights from choice
data. We use the Indian buffet process (IBP)
as a prior over the features. Inference us-
ing Markov chain Monte Carlo (MCMC) in
conjugate IBP models has been previously
described. The main contribution of this
paper is an MCMC algorithm for the EBA
model that can also be used in inference for
other non-conjugate IBP models—this may
broaden the use of IBP priors considerably.

1. Introduction

Psychologists have long been interested in the mech-
anisms underlying choice behavior (Luce, 1959). In
virtually all psychological experiments subjects are
asked to make a choice and the frequency of the re-
sponses is recorded. Often the choice is very simple
like pressing one of two buttons. However, even in
these simple choices one finds probabilistic responses.
In what seem to be identical experimental conditions
one can observe that different subjects respond dif-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

ferently. Responses vary even for the same subject
that is repeatedly presented with the same choice sce-
nario. In economics, too, choice is an omnipresent
phenomenon: Consumers choose one brand instead of
another, commuters choose to take the bus rather than
the car and college students prefer one university over
another. Considerable effort has been put into proba-
bilistic modeling of data arising from such choice sit-
uations (McFadden, 2000; Train, 2003).

In accordance with economic theory, it is often as-
sumed that humans are rational and make choices by
maximizing utility. The reason for the observed prob-
abilistic variations in choice behavior is random varia-
tions in utility. These variations may arise because dif-
ferent decision makers make different judgments about
the utility of an option, or because each decision maker
varies randomly in her assessment of utility over time.
Models that fit into this framework are called random
utility models (RUMs). In contrast to RUMs many
psychological models do not assume a rational decision
maker—instead they attempt to explain the (proba-
bilistic) mental processes that take place in the course
of a decision.

The Bradley-Terry-Luce (BTL) model (Bradley &
Terry, 1952; Luce, 1959), which can be seen both as
a RUM and as a psychological process model, is one
of the most influential models. However, it is well-
known that the BTL cannot account for all of the
choice patterns that can be observed in choice data.
There is a large literature on how choice data can vi-
olate the assumptions built into the BTL model (Res-
tle, 1961; Rumelhart & Greeno, 1971; Tversky, 1972;
Train, 2003).

Within the RUM framework several other models have
been suggested to account for these cases, e.g. the pro-
bit model with correlated noise, the nested logit and
mixed logit models (Train, 2003). Recently, a mixed
multinomial logit model with a non-parametric mix-
ing distribution has been proposed by James and Lau
(2004) using the Dirichlet process.
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In psychology, the elimination by aspects (EBA)
model—which includes the BTL model as a special
case—is probably the most prominent model. In the
EBA model it is assumed that options are represented
by binary feature vectors, called aspects. If the choice
was between several mobile phones the features could
be whether they have a built-in MP3-player, the dis-
play is in color, the battery lasts long enough, etc.
Each feature has a weight associated with it reflect-
ing the importance of each aspect for the choice. The
subject selects a feature at random (but more impor-
tant features have a higher probability to be selected)
and eliminates all options that do not have this fea-
ture. This process is repeated until only one option re-
mains. If the features are known their weights can be
estimated from choice data (Wickelmaier & Schmid,
2004). However, generally it is not known what the
features are and one would like to infer them from ob-
served choices. The usefulness of the EBA model for
the analysis of choice data has been extremely lim-
ited by the fact that inference about the underlying
features is very difficult (Tversky & Sattath, 1979).

We can treat the binary features as random and do in-
ference on them. The number of features can be cho-
sen by model selection. In a non-parametric Bayesian
setting it is also possible to use infinitely many fea-
tures. Recently, a prior over sparse binary matrices
with infinitely many columns—the Indian buffet Pro-
cess (IBP)—has been defined by Griffiths and Ghahra-
mani (2005). The IBP has been used as a prior for the
latent feature matrix in additive clustering by Navarro
and Griffiths (2005). This suggests to use the IBP as a
prior for the latent feature matrix in the EBA model.
Analytical inference in this model is intractable and
therefore we use Markov Chain Monte Carlo (MCMC)
methods.

For the model considered by Navarro and Griffiths
(2005) the prior distribution of the weights is chosen
to be conjugate to the likelihood. Therefore, the con-
ditional posteriors needed for inference using Gibbs
sampling can be calculated analytically. However, our
formulation of the EBA does not allow integration over
the weights. This prevents us from calculating the pos-
terior for the infinite feature matrix. We approximate
the posterior by truncating the feature matrix and we
use auxiliary variables for the weights.

We describe the non-parametric Bayesian formulation
of the EBA model in the next section. The MCMC
algorithm derived for inference in the non-conjugate
IBP models is presented in section 3, followed by ex-
perimental results in section 4, and we conclude with
a discussion in section 5.

2. Model Specification

The EBA model is defined for choice from a set of sev-
eral options but for clarity of presentation we consider
only the paired comparison case here which reduces
the EBA model to Restle’s choice model (Restle, 1961;
Tversky, 1972). The inference techniques we describe
below are also valid for the general EBA model.

In a paired comparison experiment there is a set of N
options but the subjects are presented only with pairs
of options at a time. The task of the subject is to indi-
cate which of two options i and j she prefers. Options
are described by K-dimensional binary feature vectors
f , called aspects in the EBA model. The probability
of choosing option i over option j is given as

pij =
∑

k wkfik(1− fjk)∑
k wkfik(1− fjk) +

∑
k wkfjk(1− fik)

, (1)

where fik denotes the kth feature of option i and wk

is the positive weight associated with it. The greater
the weight of a feature the heavier its influence on
the choice probabilities. The sum

∑
k wkfik(1 − fjk)

collects the weights for all the aspects that option i
has but option j does not have. Therefore, the choice
between two alternatives depends only on the features
that are not shared between the two. In this way the
EBA model can account for the effects of similarity on
choice. If the options are characterized only by unique
aspects, i.e. no option shares any feature with any
other option, the BTL model is recovered.

If one option i has all the features that another alter-
native j has and more features on top of these then
i will always be preferred over j. This is a reason-
able assumption but in real choice data it can happen
that subjects occasionally fail to choose alternative i
because of error or lack of concentration (Kuss et al.,
2005). In order to make our inference more robust to
these lapses we add a lapse probability ε to the choice
probabilities that we fix to a small value. Thus the
choice probabilities become p̃ij = (1− ε)pij + 0.5ε.

Let us denote the number of times that i was chosen
over j in a paired comparison experiment by xij . It is
assumed that xij is binomially distributed

P (xij) =
(

xij + xji

xij

)
(p̃ij)xij (1− p̃ij)xji , (2)

and is independent of all other comparisons in the ex-
periment. We can then write the likelihood of all the
observed choices in a paired comparison experiment as

P (X|F,w) =
N∏

j=1

∏
i<j

P (xij |fi, fj ,w), (3)
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where X is a matrix that collects the results of all
paired comparisons xij , F is a N×K binary matrix of
features with entries fik for the kth feature of option
i, and w is a vector containing the weights wk of all
features.

To complete the model we need to specify the priors
over the model parameters, i.e. the binary features
and the weights. Since we do not know the features a
priori we use a non-parametric prior over the binary
feature matrix, the Indian buffet process (IBP). We
put independent gamma 1 priors on the weights,

F ∼ IBP(α) (4)

wk ∼ G(1, 1). (5)

IBP (Griffiths & Ghahramani, 2005) is a distribu-
tion over binary matrices with infinitely many columns
with a parameter α that controls the sparsity of the
matrix. Inspired by the derivation of the Chinese
restaurant process by Pitman (2002), the process is
described by imagining an Indian buffet offering an
infinite number of dishes. Each customer entering the
restaurant chooses the dishes that have been already
sampled by other customers with probability propor-
tional to their popularity. Then he also tries a number
of new dishes dependent on the parameter α. The
customers (rows of the matrix) are exchangeable and
dishes (columns) are independent. For the EBA model
the customers correspond to options in the choice set
and the dishes correspond to features. Thus, the IBP
prior implies that the ordering of the options is not
important and the features are independent a priori.

The probability distribution defined by the IBP can
also be derived by considering a finite feature matrix
with K columns representing the features and taking
the limit as K → ∞, see Griffiths and Ghahramani
(2005) for details. For the finite model, the conditional
prior distribution for an entry fik in the feature matrix
F is

P (fik = 1|f−i,k) =
m−i,k + α/K

N + α/K
, (6)

where f−i,k denotes the feature vector k with the ith
element excluded, and m−i,k is the number of alterna-
tives other than i that have feature k.

When we consider infinitely many features there might
be some features that are shared between the options
and some that are unique to an option. We will refer to
both cases as the represented features. Furthermore,
there will be infinitely many other features that no
option has which we will refer to as the unrepresented
features.

1G(θ|α, β) = βα

Γ(α)
θα−1 exp−βθ

In the limit K → ∞, the distribution of the features
becomes

P (fik = 1|f−i,k) =
m−i,k

N
, (7)

for m−i,k > 0. For m−i,k = 0, the probability

P (fik = 1|f−i,k) =
α/K

N + α/K
, (8)

approaches zero with K → ∞. Considering infinitely
many features results in a Poisson(α/N) distribution
for the prior number of unique features for alternative
i. Notice that m−i,k = 0 for both the features that are
unique to option i and the unrepresented features.

3. MCMC Inference

Inference for the above model can be done using
MCMC techniques. We use approximate Gibbs sam-
pling for updating the feature matrix F and the IBP
parameter α and Metropolis Hastings updates for the
weights w. The sampling algorithm described has
been summarized in Algorithm 1.

3.1. Feature Updates

Gibbs sampling for the feature updates requires the
posterior of each fik conditioned on all other features
F−(ik) and the weights w. The conditional posterior
for the represented features other than the features
unique to the ith option can be obtained by combining
the likelihood given in eq. (3) with the prior given in
eq. (7),

P (fik = 1|X, F−(ik),w)
= m−i,k

Z P (X|fik = 1, F−(ik),w)
P (fik = 0|X, F−(ik),w)

= N−m−i,k

Z P (X|fik = 0, F−(ik),w),

(9)

where Z is the normalizing constant.

The prior probability given in eq. (8) for m−i,k = 0
approaches zero as K → ∞. In the conjugate mod-
els, like the linear Gaussian model in Griffiths and
Ghahramani (2005) or additive clustering in Navarro
and Griffiths (2005), the parameters associated with
the features can be integrated out. Therefore, the pos-
terior distribution for the infinitely many features can
be computed analytically. For the model we consider,
the prior for the weights given in eq. (5) and the likeli-
hood given in eq. (3) are not conjugate. The likelihood
cannot be marginalized over the weights, hence the
weights associated with each feature vector need to be
represented explicitly. Therefore, we cannot compute
the limiting posterior distribution over the infinite fea-
ture matrix.
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We can obtain an approximation to the infinite case by
truncating the number of Bernoulli trials with proba-
bility α/K

N+α/K at a finite value K∗, and considering the
joint posterior probability of these K∗ features. Note
the difference compared to a finite model where the
number of total features is fixed at a certain value. For
IBP there are always infinitely many features, most of
them being unrepresented, hence they do not affect the
likelihood. We use the truncation only as an approxi-
mation for the Gibbs sampling updates of the existing
or new unique features. Therefore, the number of fea-
tures the model can introduce is not bounded contrary
to a model with a finite but large number of features.

The IBP models have close correspondences with the
Dirichlet process (DP) models which allows infinite
components in the mixture model. The unique fea-
tures of an option can be thought of as the singleton
components in the DP, and the unrepresented features
as the mixture components that do not have any data
associated with them. The sampling scheme we use
for IBP is very similar to ”Algorithm 8” of Neal (2000)
for inference in the Dirichlet process models with non-
conjugate priors.

We use K∗ auxiliary variables to represent the pos-
sible values for the weights w∗ of the features that
are not associated with any other option. We asso-
ciate weights of the existing unique features of option
i with some of the auxiliary weights and draw values
from the prior given in eq. (5) for the rest of the auxil-
iary weights. We denote the represented features that
are not unique to option i as F− and the K∗ features
that are not associated with any other option with F ∗

l .
All entries of F ∗

l are zero except the ith row. There
are 2K∗

possible combinations for the unique features
for option i. We evaluate the posterior probabilities
of all l = 1, . . . , 2K∗

possible F ∗
l and sample from this

distribution to decide on which to include. The joint
posterior for F ∗

l will consist of the Bernoulli probabil-
ities of setting each feature in the ith row to 0 or 1
(with probability α/K∗

N+α/K∗ ) and the probability of the
data given F−, w−, F ∗

l and w∗,

P (F ∗
l |X, F−,w−,w∗)
∝ P (F ∗

l ) P (X|F ∗
l , F−,w−,w∗) .

(10)

3.2. Weight Updates

We update the weights using Metropolis Hastings sam-
pling. We sample a new weight from a proposal dis-
tribution Q(w′

k|wk) and accept the new weight with
probability

min

(
1,

P
(
w′

k|X, F, w−k, wk λ
)

P
(
wk|X, F, w−k, w′

k, λ
) Q(wk|w′

k)
Q(w′

k|wk)

)
. (11)

Algorithm 1 MCMC algorithm for EBA
Inputs: X, K∗

Initialize: F , W and α randomly
Repeatedly sample as follows:

for all objects i = 1, . . . , N do {Feature updates}
for all represented features k = 1, . . . ,K+ do

if m−i,k > 0 then
update fik by eq. (9)

else {m−i,k = 0}
set one of the auxiliary weights w∗

j to wk

end if
end for
sample values from eq. (5) for the w∗

j that are not
yet assigned a value
remove unique features of i from F to get F−
remove corresponding weights from w to get w−
for all l = 1, . . . , 2K∗

possible F ∗
l do

calculate the posterior P (F ∗
l |X, F−,w−,w∗)

end for
pick a feature combination F ∗

l with probability
proportional to its posterior
update F to be the combination of F− and F ∗

l

update w to be the combination of w− and w∗

remove the zero columns from F and the corre-
sponding weights
discard F ∗

l and w∗

end for

for all weights k = 1, . . . ,K+ do {Weight updates}
draw a candidate w′

k from the proposal eq. (12)
accept the new value with probability eq. (11)

end for
sample α from eq. (13)

As the proposal distribution we use a gamma distri-
bution with mean equal to the current value of the
weight, wk, and standard deviation proportional to it,

Q(w′
k|wk) = G(ηwk, η/wk). (12)

We adjust η to have an acceptance rate around 0.5.

Note that there are infinitely many weights that are
associated with the infinitely many features. Since the
unrepresented features and their weights do not affect
the likelihood, we need to only consider the weights
that are associated with the represented features.

3.3. Update for IBP parameter α

The IBP parameter α affects the number of rep-
resented features therefore updating this parameter
would give more flexibility to the model. We put a
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Table 1. Choice probabilities for the Paris-Rome example.
Columns are chosen over rows.

P+ P R R+

P+ 0.50 0 0.48 0.50
P 1 0.50 0.50 0.52
R 0.52 0.50 0.50 1
R+ 0.50 0.48 0 0.50

vague gamma prior on α,

α ∼ G(1, 1).

The likelihood for α can be derived from the joint dis-
tribution of the features given in Equation 34 of Grif-
fiths and Ghahramani (2005),

p(F |α) = αK+exp
(
− α

N∑
j=1

1
j

)
,

where K+ is the number of represented components
and N is the number of options. Combining this like-
lihood with the prior, we get the posterior distribution

p(α|F ) = G
(
1 + K+, 1 +

N∑
j=1

1
j

)
. (13)

4. Experiments

In this section, we present empirical results on an ar-
tificial data set and on real data. Both data sets have
been considered in the choice model literature.

We observed some feature configurations in which the
Markov chain got stuck due to the incremental updates
of the Gibbs sampler and the likelihood function not
being smooth. To avoid this problem, we used a two-
part feature matrix model which is a combination of
the infinite model and a finite model with one unique
feature per alternative (equivalent to BTL), with cor-
responding weights. We kept the features of the finite
part fixed while updating the weights for both finite
and infinite parts so that if the evidence is in favor of
an option not having a unique feature the weight for
this feature can go to very small values. We report
results obtained using this two-part model.

We truncate trials for the new features at K∗ = 5 and
set the lapse parameter to ε = 0.01. We initialize the
parameters α, F and w randomly from their priors.

4.1. Paris-Rome

We first consider an example given by Tversky (1972).
It was constructed as a simple example that the BTL

model cannot deal with. We will use this example
to illustrate that the EBA model with infinitely many
latent features can recover latent structure from choice
data.

Consider the choice between two trips that are on of-
fer at a travel agency: one to Paris (P ) and one to
Rome (R). Another travel agency offers exactly the
same trips there is an additional small bonus. to Paris
and to Rome except that there is an additional small
bonus. We denote these options by P+ and R+, re-
spectively. The options in the choice set consist of
P, P+, R, R+. We assume that the decision maker
assigns the same value to the trip to Paris and to the
trip to Rome. Hence, she will be equally likely to pre-
fer the trip to either city. We denote the probability
that Paris is chosen over Rome with P (P,R) = 0.5. As
it is always better to get a bonus than to not get it we
can assume that when given the options P and P+ she
would choose P+ with certainty, i.e. P (P+, P ) = 1.
However, since a small bonus will not influence the
choice between the two cities, P (P+, R) will be close
to 0.5, and likewise for P (R+, P ). We assume that the
trip itself to either city has a feature with value w and
the bonus is worth 0.01w. Thus, the feature matrix is
as shown top left of Figure 1. The alternatives P and
P+ share the feature of being the trip to Paris and R
and R+ share the feature of being the trip to Rome.
P+ and R+ share the small bonus denoted by the $
column. Note that there might be some features that
trips to either city possess such as taking the plane,
going to Europe, etc. Since these features will be com-
mon to all options in the choice set they do not affect
the choice probabilities. The matrix of choice proba-
bilities calculated assuming the EBA model is shown
in Table 1.

We generated choice data of 100 comparisons for each
pair using these probabilities and used the EBA model
with infinitely many latent features (iEBA) to infer
the latent structure of the options. The results of a
sample run for the iEBA model are shown in Figure 1.
The top row shows the feature matrix that is used
to generate the data, histogram of the frequencies for
the represented features and the posterior distribution
of the IBP parameter α. The plots below show the
change in the log likelihood, the number of represented
features of the IBP part of the feature matrix and α
over the sampling iterations. It can be seen from the
trace plots that the burn-in time is very short and the
chain seems to mix well.

The iEBA model takes only the choice data and the
truncation level as input, and it can recover the fea-
ture matrices given in Figure 1 from the data. Some
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Figure 1. Feature matrix representation and simulation re-
sults on the toy data: the choice between trips to Paris
and Rome. Top left: Features weighted by the associated
values are shown. Rows correspond to the alternatives and
columns correspond to the features. Darker means smaller
in amplitude. The alternatives P and P+ share the feature
of being the trip to Paris and R and R+ share the feature
of being the trip to Rome. P+ and R+ share the small
bonus denoted by the $ column.

sample feature matrices from the chain are depicted
in Figure 2 which shows that the model successfully
finds the latent feature representation that was used
to generate the data. Note that the mapping from the
choice probabilities to features is not unique, that is,
several latent feature representations may result in the
same choice probabilities. The important point is that
the model can infer that there are features that only P
and P+ share, and there are features that only R and
R+ share. The small bonus that R+ and P+ have in
common is represented as two different features with
similar weights. Models on a larger set of alternatives
might result in feature representations that cannot be
interpreted easily, as will be seen in the next example.

4.2. Celebrities

As a second example we analyze real choice data from
an experiment by Rumelhart and Greeno (1971) that
is known to exhibit patterns that the BTL model can-
not capture. Subjects were presented with pairs of
celebrities and asked ”with whom they would prefer
to spend an hour of conversation”. There are nine
celebrities that were chosen from three groups: three
politicians, three athletes and three movie stars. In-
dividuals within each group are assumed to be more

P+
P 
R 

R+

Figure 2. Random binary feature matrix samples from the
chain for the Paris-Rome example. The gray level indicates
the weight of each feature. Rows correspond to options
and columns to features. Only the represented features
are shown. It is inferred that there are features that only
P and P+ share, and only R and R+ share. Note that
there are also some features common to all options which
do not affect the likelihood. The first four columns in these
figures are the fixed features, remaining columns are from
the posterior of the infinite part. Note that the weights
of the fixed unique features for P and R are very close to
zero, which is expected since they are not supported by
the data. The unique features for P+ and R+ have small
weights representing the small bonus.

similar to each other and this should have an effect
on the choice probabilities beyond the variation that
can be captured by the BTL model. The choice prob-
abilities could be captured better by a feature matrix
that has unique features for each individual plus one
feature for being a politician, one feature for being an
athlete and one feature for being a movie star. The
assumed feature matrix is shown in Figure 3. This
feature matrix can also be depicted as a tree therefore
we refer to this model as the tree EBA model (tEBA)
(Tversky & Sattath, 1979).

We modeled the choice data with different specifica-
tions for the EBA model: the model which assumes
all options to have only unique features (BTL), the
EBA model with tree structure (tEBA), two finite
EBA models with the number of features fixed to be
12 and 15 (EBA12 and EBA15), and the EBA model
with infinitely many latent features (iEBA). Although
the experiment by Rumelhart and Greeno (1971) was

P1
P2
P3
A1
A2
A3
M1
M2
M3 P3 A1 A3 M1 M2 M3P1 P2 A2

movie star

athlete

politician

Figure 3. Representation of the assumed features for the
celebrities data. The tree structure on the right shows nine
celebrities of three professions. Each individual is assumed
to have a unique feature and one feature that he shares
with the other celebrities that have the same profession.
The left panel shows this assumed feature matrix which is
used for training the tEBA model.
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designed with the tree structure depicted in Figure 3
in mind, we do not know the true latent features that
lead to the choices of the subjects. We compare the
predictive performance of each model using a a leave-
one-out scenario.

We train the models on the data of all possible pair-
wise comparisons except one pair. We then predict
the choice probability for the pair that was left out
and repeat this procedure for all pairs. We evalu-
ate the performance of each model by the negative
log likelihood on the mean of the predictive distribu-
tion2 for each pair. The negative log likelihood of each
model averaged over the 36 pairs is shown in Table 2.
For better comparison we also report the values for a
baseline model that always predicts 0.5 and the upper
bound that could be reached by predicting the em-
pirical probabilities exactly. Furthermore, to see how
much information we gain over the baseline model by
using the different models we report an information
score for each single paired comparison: The nega-
tive log likelihood averaged over the pairs and number
of comparisons in bits with the baseline model sub-
tracted.

The choice set was designed with the tree structure in
mind. The iEBA and the tEBA models have the best
predictive performance on average. This shows that
the underlying structure could be successfully repre-
sented by the infinite model. However, we cannot ob-
serve the tree structure in the latent features that are
found by the iEBA. Note that different feature rep-
resentations can result in the same choice probabil-
ities. The mean number of represented features for
the iEBA model for different pairs is between 30 and
50—much more than the number of features in tEBA.
This explains why the average performance of EBA12
and EBA15 is worse than that of iEBA and tEBA
even though they could implement the tree structure
in principle. As we cannot know how many features
will be necessary beforehand this is a strong argument
for using a non-parametric prior. As expected, the
BTL model cannot capture as much information as
the other models.

Figure 4 shows a more fine-grained analysis of the
BTL, tEBA and iEBA models. Each point corre-
sponds to one paired comparison: the negative log
likelihood of one model versus the negative log like-
lihood of another model. Out of 36 pairs BTL has a

2The loss function L(θ̂, θ) = −θlogθ̂ − (1− θ)log(1− θ̂)
expresses the discrepancy between the true probabilities θ

and the predicted probabilities θ̂. The mean of the pre-
dicted probabilities minimizes the expected loss and there-
fore we take this as a point estimate.

Table 2. Predictive performance of different models: The
baseline model that always predicts a probability of 0.5
(BASE), the Bradley-Terry-Luce model (BTL), the finite
EBA model with 12 features (EBA12), finite EBA model
with 15 features (EBA15), EBA model with tree structure
(tEBA), the EBA model with IBP prior (iEBA), and for
comparison the empirical probabilities (EMP). NLL: The
negative log likelihood values on the mean predictive prob-
abilities. IS: Information score in bits (the information gain
compared to the model that always predicts 0.5). NLL and
IS both express the same values in different scales.

model NLL IS

BASE 17.57 0
BTL 4.66 0.0795
EBA12 4.50 0.0806
EBA15 4.31 0.0817
tEBA 3.95 0.0839
iEBA 3.92 0.0841
EMP 2.89 0.0905

smaller log likelihood for 23 of the pairs when com-
pared to tEBA and 26 when compared to iEBA. How-
ever, it can be seen that the bad performance of the
BTL model on average is also due to the fact that it
cannot capture the probabilities of some pairs at all.
The iEBA and tEBA likelihoods are comparable al-
though there are some pairs on which iEBA performs
better than tEBA, and vice versa.

5. Discussion

EBA is a choice model which has correspondences
to several models in economics and psychology. The
model assumes the choice probabilities to result from
the non-shared features of the options. We have sug-
gested to use an infinite latent feature matrix to repre-
sent unknown features of the options. The usefulness
of the EBA model has been hampered by the lack of
such a method. We showed empirically that the in-
finite model (iEBA) can capture the latent structure
in the choice data as well as the handcrafted model
(tEBA). For data for which we have less prior informa-
tion it might not be possible to handcraft a reasonable
feature matrix.

We have described a sampling algorithm for infer-
ence in the EBA model that could deal with the non-
conjugacy in the prior of the weights. So far inference
for the IBP has only been considered for conjugate
priors on the parameters associated with the feature
matrix. We have described a sampling algorithm for
inference in the EBA model that could deal with the
non-conjugacy in the prior of the weights. The main
theoretical contribution of this work is the extension
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Figure 4. The negative log likelihood of one model versus another. Each point corresponds to one paired comparison.

of MCMC inference using the IBP prior in the non-
conjugate case. This may widen the applicability of
the IBP prior considerably.

Some issues about our sampling algorithm need to be
addressed. We approximate the limit distribution of
the IBP prior by truncation. The quality of approxi-
mation depends on the truncation level K∗. But large
values of K∗ are prohibitive due to the exponential in-
crease in computation. We are currently working on
improving the computational cost and on evaluating
the quality of approximation.

Different feature matrices can result in the same choice
probabilities and therefore are not distinguished by the
model. For example, features that are shared by all
options do not affect the likelihood. Furthermore, only
the ratio of the weights affects the likelihood. What
seems to be a non-identifiability problem is not an issue
for sampling since we are interested in inferring the
choice probabilities, not the ”true” features.

On a more conceptual side the non-identifiability of
the model makes the samples from the posterior hard
to interpret. For the celebrities data one might have
hoped to find feature matrices that correspond to a
tree or at least find matrices with some other directly
interpretable structure. However, we can use the pos-
terior to predict future choices from past data, assess
the similarity of the options and cluster or rank them.
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Notes for Ecole d’Eté Saint-Flour Summer School.

Restle, F. (1961). Psychology of judgment and choice:
A theoretical essay. John Wiley & Sons.

Rumelhart, D., & Greeno, J. (1971). Similarity be-
tween stimuli: An experimental test of the Luce and
Restle choice models. Journal of Mathematical Psy-
chology, 8, 370–381.

Train, K. (2003). Discrete choice methods with simu-
lation. Cambridge University Press.

Tversky, A. (1972). Elimination by aspects: A theory
of choice. Psychological Review, 79, 281–299.

Tversky, A., & Sattath, S. (1979). Preference trees.
Psychological Review, 86, 542–573.

Wickelmaier, F., & Schmid, C. (2004). A Matlab
function to estimate choice model parameters from
paired comparison data. Behavior Research Meth-
ods, Instruments, & Computers, 36, 29–40.


